High-level Synthesis for Low-power Design
نویسندگان
چکیده
Power and energy efficiency have emerged as first-order design constraints across the computing spectrum from handheld devices to warehouse-sized datacenters. As the number of transistors continues to scale, effectively managing design complexity under stringent power constraints has become an imminent challenge of the IC industry. The manual process of power optimization in RTL design has been increasingly difficult, if not already unsustainable. Complexity scaling dictates that this process must be automated with robust analysis and synthesis algorithms at a higher level of abstraction. Along this line, high-level synthesis (HLS) is a promising technology to improve design productivity and enable new opportunities for power optimization for higher design quality. By allowing early access to the system architecture, high-level decisions during HLS can have a significant impact on the power and energy efficiency of the synthesized design. In this paper, we will discuss the recent research development of using HLS to effectively explore a multi-dimensional design space and derive low-power implementations. We provide an in-depth coverage of HLS low-power optimization techniques and synthesis algorithms proposed in the last decade. We will also describe the key power optimization challenges facing HLS today and outline potential opportunities in tackling these challenges.
منابع مشابه
Design and Synthesis of High Speed Low Power Signed Digit Adders
Signed digit (SD) number systems provide the possibility of constant-time addition, where inter-digit carry propagation is eliminated. Such carry-free addition is primarily a three-step process; adding the equally weighted SDs to form the primary sum digits, decomposing the latter to interim sum digits and transfer digits, which commonly belong to {–1, 0, 1}, and finally adding the tra...
متن کاملHow to Transform an Architectural Synthesis Tool for Low Power VLSI Designs
High Level Synthesis (HLS) for Low Power VLSI design is a complex optimization problem due to the Area/Time/Power interdependence. As few low power design tools are available, a new approach providing a modular low power synthesis method is proposed. Although based for the moment on a generic architectural synthesis tool Gaut, the use of different "commercial" tools is possible. The Gaut_w HLS ...
متن کاملHigh-performance and Low-power Clock Branch Sharing Pseudo-NMOS Level Converting Flip-flop
Multi-Supply voltage design using Cluster Voltage Scaling (CVS) is an effective way to reduce power consumption without performance degradation. One of the major issues in this method is performance and power overheads due to insertion of Level Converting Flip-Flops (LCFF) at the interface from low-supply to high-supply clusters to simultaneously perform latching and level conversion. In this p...
متن کاملDesign of a low power high speed 4-2 compressor using CNTFET 32nm technology for parallel multipliers
In this article a low power and low latency 4-2 compressor has been presented. By using modified truth table and Pass Transistor Logic (PTL) a novel structure has been proposed which outperforms previous designs from the frequency of operation view point. The proposed design method has reduced the total transistor count considerably which will lead to reduced power consumption and smaller activ...
متن کاملHigh-Level Synthesis Algorithms for Power and Temperature Minimization
Increasing digital system complexity and integration density motivate automation of the integrated circuit design process. High-level synthesis is a promising method of increasing designer productivity. Continued process scaling and increasing integration density result in increased power consumption, power density, and temperature. High-level synthesis for integrated circuit (IC) power and the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IPSJ Trans. System LSI Design Methodology
دوره 8 شماره
صفحات -
تاریخ انتشار 2015